85.689 kg is the astronaut's mass.
Explanation:
Given data: m = 22.5 kg and T = 1.3 sec
So, using the below formula,
[tex]T = 2 \pi \sqrt{\frac{m}{k}}[/tex]
Now, after putting the values of m and T in the above equation, we will find out the value of k which is as,
[tex]1.3 = 2 \times\left(\frac{22}{7}\right) \sqrt{\frac{22.5}{k}}[/tex]
[tex]1.3 \times 7=44 \sqrt{\frac{22.5}{k}}[/tex]
[tex]\frac{9.1}{44}=\sqrt{\frac{22.5}{k}}[/tex]
To remove the square root, take square on both sides, we get,
[tex](0.2068)^{2}=\frac{22.5}{k}[/tex]
[tex]k=\frac{22.5}{0.0428}=525.7 \mathrm{N} / \mathrm{m}[/tex]
Now, we have the same string but this time we have different mass and different time. So, let the mass of the astronaut is [tex]m=m_{a}[/tex] and [tex]T_{a}[/tex] = 2.54 sec, k= 525.7 kg. Apply these values in the equation, we get,
[tex]2.54 = 2 \times 3.14\left(\frac{m_{a}}{525.7}\right)^{\frac{1}{2}}[/tex]
[tex]\frac{2.54}{6.28} = \left(\frac{m_{a}}{525.7}\right)^{\frac{1}{2}}[/tex]
[tex]0.404 = \left(\frac{m_{a}}{525.7}\right)^{\frac{1}{2}}[/tex]
Taking squares on both sides, we get,
[tex]m_{a} = 525.7 \times(0.404)^{2}=525.7 \times 0.163 = 85.689 \mathrm{kg}[/tex]