Respuesta :
Answer:
d= 7.32 mm
Explanation:
Given that
E= 110 GPa
σ = 240 MPa
P= 6640 N
L= 370 mm
ΔL = 0.53
Area A= πr²
We know that elongation due to load given as
[tex]\Delta L=\dfrac{PL}{AE}[/tex]
[tex]A=\dfrac{PL}{\Delta LE}[/tex]
[tex]A=\dfrac{6640\times 370}{0.53\times 110\times 10^3}[/tex]
A= 42.14 mm²
πr² = 42.14 mm²
r=3.66 mm
diameter ,d= 2r
d= 7.32 mm
Answer:
[tex]d=7.32\ mm[/tex]
Explanation:
Given:
- Young's modulus, [tex]E=110\times 10^3\ MPa[/tex]
- yield strength, [tex]\sigma_y=240\ MPa[/tex]
- load applied, [tex]F=6640\ N[/tex]
- initial length of rod, [tex]l=370\ mm[/tex]
- elongation allowed, [tex]\Delta l=0.53[/tex]
We know,
Stress:
[tex]\sigma=\frac{F}{A}[/tex]
where: A = cross sectional area
Strain:
[tex]\epsilon = \frac{\Delta l}{l}[/tex]
& by Hooke's Law within the elastic limits:
[tex]E=\frac{\sigma}{\epsilon}[/tex]
[tex]\therefore 110\times 10^3=\frac{F}{A}\div \frac{\Delta l}{l}[/tex]
[tex]\therefore 110\times 10^3=\frac{6640\times 4}{\pi.d^2}\div \frac{0.53}{370}[/tex]
where: d = diameter of the copper rod
[tex]d=7.32\ mm[/tex]