Respuesta :

Answer:

The probability that a randomly selected point within the falls in the shaded region is 0.6366

Step-by-step explanation:

Here in these cases probability, P=[tex]\frac{n(E)}{n(S)}[/tex]=[tex]\frac{required number of points}{Total number of points in sample space}[/tex]

And collection of points is nothing but the area occupied by those points

Therefore, P=[tex]\frac{Required Area }{TotalArea Of Sample Space}[/tex]

Given: Radius, r=[tex]4[/tex] cm

           Side, s=[tex]4\sqrt{2}[/tex] cm

In this question, circle is the sample space,S, hence n(S)=area of the circle

                                                                                             =π[tex]r^{2}[/tex]

                                                                                             =16π cm²

                                                                                             =50.265 cm²

Let A be the event of selecting a random point within the circle such that it falls within the shaded region

So, n(A)= area of the square

            =[tex]s^{2}[/tex]

            =32 cm²

Therefore, the probability that a randomly selected point within the falls in the shaded region ,P(A)=[tex]\frac{Area Of The Square}{Area Of The Circle}[/tex]=[tex]\frac{32}{50.265} =0.6366[/tex]

RELAXING NOICE
Relax