Answer:
ΔH°r = -184.6 kJ
Explanation:
Let's consider the following balanced equation.
H₂(g) + Cl₂(g) ⇄ 2 HCl(g)
We can calculate the standard enthalpy of the reaction (ΔH°r) using the following expression:
ΔH°r = ∑np . ΔH°f(p) - ∑nr . ΔH°f(r)
where,
ni are the moles of reactants and products
ΔH°f(p) are the standard enthalpies of formation of reactants and products
By definition, the standard enthalpy of formation of a simple substance in its most stable state is zero. Then,
ΔH°r = 2 mol × ΔH°f(HCl(g)) - [1 mol × ΔH°f(H₂(g)) + 1 mol × ΔH°f(Cl₂(g))]
ΔH°r = 2 mol × (-92.3 kJ/mol) - [1 mol × 0 + 1 mol × 0]
ΔH°r = -184.6 kJ