An electric motor can drive grinding wheel at two different speeds. When set to high the angular speed is 2000 rpm. The wheel turns at 1000 rpm when set to low. When the switch is changed from high to low, it takes the wheel 60 sec to slow down. A) ( 5 points) What is the initial angular speed of the high setting in rad/sec B) (5 points) What is the angular acceleration in rad/s2 of the wheel? C) (5 points) What is the angular speed in rad/s 40 seconds after the setting is changed? D) (5 points) How many revolutions did it make as it changes speed?

Respuesta :

a) The initial angular speed is 209.3 m/s

b) The angular acceleration is [tex]-1.74 rad/s^2[/tex]

c) The angular speed after 40 s is 139.7 rad/s

d) The wheel makes 1501 revolutions

Explanation:

a)

The initial angular speed of the wheel is

[tex]\omega_i = 2000 rpm[/tex]

which means 2000 revolutions per minute.

We have to convert it into rad/s. Keeping in mind that:

[tex]1 rev = 2\pi rad[/tex]

[tex]1 min = 60 s[/tex]

We find:

[tex]\omega_i = 2000 \frac{rev}{min} \cdot \frac{2\pi rad/rev}{60 s/min}=209.3 rad/s[/tex]

b)

To find the angular acceleration, we have to convert the final angular speed also from rev/min to rad/s.

Using the same procedure used in part a),

[tex]\omega_f = 1000 \frac{rev}{min} \cdot \frac{2\pi rad/rev}{60 s/min}=104.7 rad/s[/tex]

Now we can find the angular acceleration, given by

[tex]\alpha = \frac{\omega_f - \omega_i}{t}[/tex]

where

[tex]\omega_i = 209.3 rad/s[/tex] is the initial angular speed

[tex]\omega_f = 104.7 rad/s[/tex] is the final angular speed

t = 60 s is the time interval

Substituting,

[tex]\alpha = \frac{104.7-209.3}{60}=-1.74  rad/s^2[/tex]

c)

To find the angular speed 40 seconds after the initial moment, we use the equivalent of the suvat equations for circular motion:

[tex]\omega' = \omega_i + \alpha t[/tex]

where we have

[tex]\omega_i = 209.3 rad/s[/tex]

[tex]\alpha = -1.74 rad/s^2[/tex]

And substituting t = 40 s, we find

[tex]\omega' = 209.3 + (-1.74)(40)=139.7 rad/s[/tex]

d)

The angular displacement of the wheel in a certain time interval t is given by

[tex]\theta=\omega_i t + \frac{1}{2}\alpha t^2[/tex]

where

[tex]\omega_i = 209.3 rad/s[/tex]

[tex]\alpha = -1.74 rad/s^2[/tex]

And substituting t = 60 s, we find:

[tex]\theta=(209.3)(60) + \frac{1}{2}(-1.74)(60)^2=9426 rad[/tex]

So, the wheel turns 9426 radians in the 60 seconds of slowing down. Converting this value into revolutions,

[tex]\theta = \frac{9426 rad}{2\pi rad/rev}=1501 rev[/tex]

Learn more about circular motion:

brainly.com/question/2562955

brainly.com/question/6372960

#LearnwithBrainly

ACCESS MORE
EDU ACCESS