In the diagram ABCD is a rectangle and PQ is parallel to AD
The area of ABCD is 60cm squared
The area of APQD is 24cm squared
calculate the value of f and g​

In the diagram ABCD is a rectangle and PQ is parallel to AD The area of ABCD is 60cm squared The area of APQD is 24cm squared calculate the value of f and g class=

Respuesta :

Answer:

f = 4

g = 6

Step-by-step explanation:

subtract areas to find the area of BCPQ:

60-24 = 36

Solve for g using area of BCPQ:

36=9f

f=4

since they rectangles are parallel use f to solve for g:

24=4g

g=6

The values of [tex]f[/tex] and [tex]g[/tex] are  [tex]4cm[/tex] and [tex]6cm[/tex] .

What is area ?

Area is the amount of space which is occupied by any 2D shape.

Area [tex]=Length\ *\ Breadth[/tex]

We have,

[tex]ABCD[/tex] is a rectangle,

[tex]PQ[/tex] is parallel to [tex]AD[/tex],

And, [tex]QC=9cm^2[/tex]

        [tex]BC=QP=f\ cm[/tex] and [tex]DQ=g\ cm[/tex],

The area of [tex]ABCD[/tex]  [tex]=60cm^2[/tex] .

The area of [tex]APQD[/tex]  [tex]=24cm^2[/tex]

So,

Lets find the area of the remaining part i.e. [tex]BCPQ[/tex],

The area of  [tex]BCPQ=[/tex] The area of [tex]ABCD-[/tex] The area of [tex]APQD[/tex]

                                 [tex]=60-24[/tex]

The area of  [tex]BCPQ[/tex] [tex]=36cm^2[/tex]

Now,

The area of  [tex]BCPQ[/tex] [tex]=QC\ *\ BC[/tex]

                             [tex]36=9\ *\ f[/tex]

⇒                           [tex]f=4cm[/tex]

Now,

The area of [tex]APQD[/tex]  [tex]=24cm^2[/tex]

                         [tex]g\ *\ f=24[/tex]

⇒                      [tex]g\ *\ 4=24[/tex]

                               [tex]g=6cm[/tex]

The values of [tex]f[/tex] and [tex]g[/tex] are [tex]4[/tex] and [tex]6[/tex] .

Hence, we can say that the values of [tex]f[/tex] and [tex]g[/tex] are  [tex]4cm[/tex] and [tex]6cm[/tex] .

To know more about area click here

https://brainly.com/question/20693059

#SPJ3

RELAXING NOICE
Relax