Plz explain and prove the triangles congruence.

Answer:
The explanation is given below with the diagram.
Step-by-step explanation:
Given:
Δ ABC is an Isosceles triangle with base AB.
D is the midpoint of AB
∴ AD = BD
To Prove:
[tex]\angle ACD \cong \angle BCD[/tex]
Proof:
Isosceles triangle property:
If Δ ABC is an Isosceles triangle with base AB, then the two sides are congruent and the base angles are congruent.
[tex]\therefore \overline{AC} \cong \overline {BC}\ and\\\therefore \angle CAD} \cong \angle CBD[/tex]
[tex]In\ \triangle ACD\ and\ \triangle BCD\\\overline{AC} \cong \overline{BC}\ \textrm{ Two sides of Isosceles Triangle are congruent}\\\angle CAD \cong \angle CBD\ \textrm{Base angles of Isosceles Triangle are congruent }\\\overline{AD} \cong \overline{BD}\ \textrm{ D is the midpoint of AB given}\\\therefore \triangle ACD \cong \triangle BCD\ \textrm{ By Side-Angle-Side test}\\\therefore \angle ACD \cong \angle BCD\ \textrm{corresponding parts(angles) of congruent triangles}\\[/tex]
[tex]\therefore \angle ACD \cong \angle BCD\ \textrm{ Proved}[/tex]