To solve this problem it is necessary to use the conservation equations of both kinetic, rotational and potential energy.
By definition we know that
[tex]KE + KR = PE[/tex]
Where,
KE =Kinetic Energy
KR = Rotational Kinetic Energy
PE = Potential Energy
In this way
[tex]\frac{1}{2} mv^2 +\frac{1}{2} I\omega^2 = mgh[/tex]
Where,
m = mass
v= Velocity
I = Moment of Inertia
[tex]\omega =[/tex] Angular velocity
g = Gravity
h = Height
We know as well that [tex]\omega = v/r[/tex] for velocity (v) and Radius (r)
Therefore replacing we have
[tex]\frac{1}{2} mv^2 +\frac{1}{2} I\omega^2 = mgh[/tex]
[tex][tex]h= \frac{1}{2} \frac{v^2}{g} +\frac{1}{2} \frac{I}{mg}(\frac{v}{r})^2[/tex][/tex]
[tex]h= \frac{1}{2}v^2 ( \frac{1}{g} +\frac{I}{mg}\frac{1}{r^2} )[/tex]
[tex]h= \frac{1}{2}0.75^2 ( \frac{1}{9.8} +\frac{2.9*10^{-5}}{(0.056)(9.8)}\frac{1}{(0.0064)^2} )[/tex]
[tex]h = 0.3915m[/tex]
Therefore the height must be 0.3915 for the yo-yo fall has a linear speed of 0.75m/s