Respuesta :

Answer:

The explanation is below.

Step-by-step explanation:

Given

C is the midpoint of [tex]\overline{AD}[/tex] and also C is the midpoint of [tex]\overline{EB}[/tex]

[tex]\overline{AC} = \overline{DC}\\ and\\\overline{BC} = \overline{EC}[/tex]

To Prove:

[tex]\angle A \cong \angle D[/tex]

Proof:

[tex]In\ \triangle ACB\ and\ \triangle DCE\\\overline{AC} \cong \overline{DC}\ \textrm{ C is the midpoint of AD}\\\angle ACD \cong \angle DCE\ \textrm{vertically opposite angles}\\\overline{BC} \cong \overline{EC}\ \textrm{ C is the midpoint of BE}\\\therefore \triangle ACB \cong \triangle DCE\ \textrm{ By Side-Angle-Side test}\\\therefore \angle BAC \cong \angle EDC\ \textrm{corresponding parts(angles) of congruent triangles}\\\therefore \angle A \cong \angle D\ \textrm{ Proved}[/tex]

RELAXING NOICE
Relax