contestada

25 point for this question:

For which values of a and b the following is true for any real number x?
[tex](x-4)/x^2+7x-18=a/x+9+b/x-2[/tex]

Respuesta :

Answer:

a=[tex]\frac{13}{11}[/tex]   b =[tex]\frac{-2}{11}[/tex]

Step-by-step explanation:

  • By equating coefficients on both sides of respective terms.

Given,

[tex]\frac{x-4}{x^2+7x-18}[/tex] = [tex]\frac{a}{x+9}[/tex] + [tex]\frac{b}{x-2}[/tex]

Now take  lcm on right hand side

[tex]\frac{x-4}{x^2+7x-18}[/tex] =[tex]\frac{a(x-2)+b(x+9)}{x^2+7x-18}[/tex]

By equating coefficients of respective terms

x-4 = a(x-2)+b(x+9)

a+b=1  -----1 ; 9b-2a=-4  -----2

Substitute b=1-a in 2

9(1-a)-2a=-4

11a=9+4=13

a=[tex]\frac{13}{11}[/tex]

As b=1-a=1- [tex]\frac{13}{11}[/tex]=[tex]\frac{-2}{11}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico