Answer:
a=[tex]\frac{13}{11}[/tex] b =[tex]\frac{-2}{11}[/tex]
Step-by-step explanation:
Given,
[tex]\frac{x-4}{x^2+7x-18}[/tex] = [tex]\frac{a}{x+9}[/tex] + [tex]\frac{b}{x-2}[/tex]
Now take lcm on right hand side
[tex]\frac{x-4}{x^2+7x-18}[/tex] =[tex]\frac{a(x-2)+b(x+9)}{x^2+7x-18}[/tex]
By equating coefficients of respective terms
x-4 = a(x-2)+b(x+9)
a+b=1 -----1 ; 9b-2a=-4 -----2
Substitute b=1-a in 2
9(1-a)-2a=-4
11a=9+4=13
a=[tex]\frac{13}{11}[/tex]
As b=1-a=1- [tex]\frac{13}{11}[/tex]=[tex]\frac{-2}{11}[/tex]