Mt. Asama, Japan, is an active volcano complex. In 2009, an eruption threw solid volcanic rocks that landed far from the crater. Suppose that one such rock was launched at an angle of θ = 58.7 degrees above horizontal, and landed a horizontal distance d = 1200 m from the crater, and a vertical distance h = 780 m below the crater.

Write and expression for v0, the initial speed of the rock in terms of θ, d, and h.

Respuesta :

Answer:u=97.41m/s

Explanation:

Given

inclination [tex]\theta =58.7^{\circ}C[/tex]

Horizontal distance travel by Particle [tex]d=1200 m[/tex]

Vertical height [tex]h=780 m[/tex]

Let u be the initial velocity

calculating vertical distance

[tex]y=u\sin \theta +\frac{at^2}{2}[/tex]

[tex]y=u\sin \theta t-\frac{gt^2}{2}[/tex]-------1

Calculating horizontal distance

[tex]x=u\cos \theta \times t+0[/tex]

[tex]t=\frac{x}{u\cos \theta }[/tex]

put value of t in equation 1

[tex]y=u\sin \theta \times \frac{x}{u\cos \theta }-\frac{g}{2}\times (\frac{x}{u\cos \theta })^2[/tex]

[tex]y=x\tan \theta -\frac{gx^2}{2u^2\cos ^2\theta }[/tex]

[tex]\frac{gx^2}{2u^2\cos ^2\theta }=x\tan \theta -y[/tex]

[tex]u^2=\frac{gx^2}{2cos^2\theta (x\tan \theta -y)}[/tex]

[tex]u=\sqrt{\frac{gx^2}{2cos^2\theta (x\tan \theta -y)}}[/tex]

at [tex]y=-780\ m\ x=1200 m[/tex]

[tex]u^2=\frac{18.154}{2753.65}\times 1200^2[/tex]

[tex]u=97.41 m/s[/tex]

Ver imagen nuuk

The expression of Vo in terms of ∅ , d and h is ; V₀ = [tex]\sqrt{\frac{gx^{2} }{2cos^{2}\beta ( x tan\beta -y ) } }[/tex]

( i.e. Vo = 97.41 m/s )

Given data :

∅  or  β  = 58.7°

Horizontal distance ( d ) = 1200 m  

Vertical height ( h ) = 780 m

Note :  ∅ = β ,  y = h   in the expression of Vo

First step : Expressing/calculating  the Vertical distance ( y )

y = u sin∅t - [tex]\frac{gt^2}{2}[/tex]   ----- ( 1 )

next ; Expressing horizontal distance

x = u cos∅t  + 0 ----- ( 2 )

t = x / u cos∅  ----- ( 3 )

Insert equation ( 3 ) into equation ( 1 )

y = u sinβ ( x / u cosβ )  - [tex]\frac{g^(x / u cos\beta )^{2} }{2}[/tex]  

  ∴ U ( V₀ ) = [tex]\sqrt{\frac{gx^{2} }{2cos^{2}\beta ( x tan\beta -y ) } }[/tex]  =  97.41 m/s

where ; y = -780 m,  x = 1200 m.

Hence we can conclude that The expression of Vo in terms of ∅ , d and h is ; V₀ = [tex]\sqrt{\frac{gx^{2} }{2cos^{2}\beta ( x tan\beta -y ) } }[/tex]    ( i.e. Vo = 97.41 m/s )

Learn more : https://brainly.com/question/19183018

RELAXING NOICE
Relax