Respuesta :
Answer:u=97.41m/s
Explanation:
Given
inclination [tex]\theta =58.7^{\circ}C[/tex]
Horizontal distance travel by Particle [tex]d=1200 m[/tex]
Vertical height [tex]h=780 m[/tex]
Let u be the initial velocity
calculating vertical distance
[tex]y=u\sin \theta +\frac{at^2}{2}[/tex]
[tex]y=u\sin \theta t-\frac{gt^2}{2}[/tex]-------1
Calculating horizontal distance
[tex]x=u\cos \theta \times t+0[/tex]
[tex]t=\frac{x}{u\cos \theta }[/tex]
put value of t in equation 1
[tex]y=u\sin \theta \times \frac{x}{u\cos \theta }-\frac{g}{2}\times (\frac{x}{u\cos \theta })^2[/tex]
[tex]y=x\tan \theta -\frac{gx^2}{2u^2\cos ^2\theta }[/tex]
[tex]\frac{gx^2}{2u^2\cos ^2\theta }=x\tan \theta -y[/tex]
[tex]u^2=\frac{gx^2}{2cos^2\theta (x\tan \theta -y)}[/tex]
[tex]u=\sqrt{\frac{gx^2}{2cos^2\theta (x\tan \theta -y)}}[/tex]
at [tex]y=-780\ m\ x=1200 m[/tex]
[tex]u^2=\frac{18.154}{2753.65}\times 1200^2[/tex]
[tex]u=97.41 m/s[/tex]

The expression of Vo in terms of ∅ , d and h is ; V₀ = [tex]\sqrt{\frac{gx^{2} }{2cos^{2}\beta ( x tan\beta -y ) } }[/tex]
( i.e. Vo = 97.41 m/s )
Given data :
∅ or β = 58.7°
Horizontal distance ( d ) = 1200 m
Vertical height ( h ) = 780 m
Note : ∅ = β , y = h in the expression of Vo
First step : Expressing/calculating the Vertical distance ( y )
y = u sin∅t - [tex]\frac{gt^2}{2}[/tex] ----- ( 1 )
next ; Expressing horizontal distance
x = u cos∅t + 0 ----- ( 2 )
∴ t = x / u cos∅ ----- ( 3 )
Insert equation ( 3 ) into equation ( 1 )
y = u sinβ ( x / u cosβ ) - [tex]\frac{g^(x / u cos\beta )^{2} }{2}[/tex]
∴ U ( V₀ ) = [tex]\sqrt{\frac{gx^{2} }{2cos^{2}\beta ( x tan\beta -y ) } }[/tex] = 97.41 m/s
where ; y = -780 m, x = 1200 m.
Hence we can conclude that The expression of Vo in terms of ∅ , d and h is ; V₀ = [tex]\sqrt{\frac{gx^{2} }{2cos^{2}\beta ( x tan\beta -y ) } }[/tex] ( i.e. Vo = 97.41 m/s )
Learn more : https://brainly.com/question/19183018
