To develop this problem it is necessary to apply the concepts related to the Aerodynamic Drag Force.
By definition the Drag Force is defined as
[tex]F_D = \frac{1}{2} \rho A C_D v^2[/tex]
Where,
A = Area
[tex]\rho[/tex]= Density
[tex]C_d[/tex] = Drag coefficient
v = Velocity
According to our values we have,
[tex]A = 1.8*1.8=3.24m^2[/tex]
[tex]C_D = 1.4[/tex]
[tex]V = 5m/s[/tex]
Replacing we have
[tex]F_D = \frac{1}{2} 1.23*3.24*1.4*5^2[/tex]
[tex]F_D = 69.74[/tex]
By definition we know that the thermal energy is given by the force applied in a given displacement then
[tex]W = F*d[/tex]
[tex]W = 69.74*200[/tex]
[tex]W = 13948J[/tex]
Therefore the thermal energy is added to the air by the drag force is 13.9kJ