Answer:
The answer for (a^5)^6 × a^2 × (a^8)^0 is a^32 or [tex]a^{32}[/tex]
Step-by-step explanation:
Given:
(a^5)^6 × a^2 × (a^8)^0
Solution:
1.By property of indices or law of indices we have
[tex](x^{a}) ^{b} = x^{(a\times b)}\\ \therefore (a^{5}) ^{6} = a^{(5\times 6)}\\ \therefore (a^{5}) ^{6} = a^{(30)}\\Similarly\\a^{2} = a^{2}\\ \\(a^{8})^{0}} = a^{(8\times 0)}\\(a^{8})^{0}} = a^{0}\ \textrm{Which is also equal to one i.e 1}\\[/tex]
Therefore the required equation will be
(a^5)^6 × a^2 × (a^8)^0
[tex](a^{5}) ^{6}\times a^{2}\times (a^{8})^{0} =a^{(30)}\times a^{2}\times a^{0}[/tex]
2. law of indices
[tex]x^{a} \times x^{b} = x^{(a+b)}\\[/tex]
Therefore,
[tex](a^{5}) ^{6}\times a^{2}\times (a^{8})^{0} = a^{(30+2+0)}[/tex]
[tex](a^{5}) ^{6}\times a^{2}\times (a^{8})^{0} = a^{(32)}[/tex]