Respuesta :
Answer:
Part a)
[tex]f = \frac{0.5}{1.5} = \frac{1}{3}[/tex]
B) uniform Sphere
[tex]f = \frac{2}{7}[/tex]
C) uniform hollow sphere
[tex]f = \frac{2}{5}[/tex]
D) uniform hollow cylinder with inner radius R/2 and outer radius R
[tex]f = \frac{5}{13}[/tex]
Explanation:
As we know that fraction of total energy as rotational energy is given as
[tex]f = \frac{\frac{1}{2}I\omega^2}{\frac{1}{2}mv^2 + \frac{1}{2}I\omega^2}[/tex]
now we have
[tex] f = \frac{mk^2(\frac{v^2}{R^2})}{mv^2 + mk^2(\frac{v^2}{R^2})}[/tex]
[tex]f = \frac{\frac{k^2}{R^2}}{1 + \frac{k^2}{R^2}}[/tex]
now we have
A) uniform Solid cylinder
for cylinder we know that
[tex]\frac{k^2}{R^2} = 0.5[/tex]
[tex]f = \frac{0.5}{1.5} = \frac{1}{3}[/tex]
B) uniform Sphere
for sphere we know that
[tex]\frac{k^2}{R^2} = \frac{2}{5}[/tex]
[tex]f = \frac{0.4}{1.4} = \frac{2}{7}[/tex]
C) uniform hollow sphere
for hollow sphere we know that
[tex]\frac{k^2}{R^2} = \frac{2}{3}[/tex]
[tex]f = \frac{\frac{2}{3}}{\frac{5}{3}} = \frac{2}{5}[/tex]
D) uniform hollow cylinder with inner radius R/2 and outer radius R
for annular cylinder we know that
[tex]\frac{k^2}{R^2} = \frac{5}{8}[/tex]
[tex]f = \frac{\frac{5}{8}}{\frac{13}{8}} = \frac{5}{13}[/tex]
The fraction of the total kinetic energy that is rotational for a uniform sphere is [tex]\frac{1}{3}[/tex]
How to calculate rotational kinetic energy.
Mathematically, the rotational kinetic energy of an object is given by this formula:
[tex]K.E_{rot}=\frac{1}{2} I\omega^2[/tex]
Where:
- I is the moment of inertia.
- [tex]\omega[/tex] angular velocity.
Since we know that half of the total kinetic energy for a hollow, cylindrical shell that is rolling without slipping on a horizontal surface is translational and the other half is rotational. Thus, this fraction is given by this mathematical expression:
[tex]K.E=\frac{\frac{k^2}{R^2} }{1+\frac{k^2}{R^2}}[/tex]
a. For a uniform sphere:
[tex]\frac{k^2}{R^2}=0.5[/tex]
Substituting, we have:
[tex]K.E=\frac{0.5 }{1+0.5}\\\\K.E=\frac{0.5 }{1.5}\\\\K.E =\frac{1}{3}[/tex]
b. For a thin-walled hollow sphere:
[tex]\frac{k^2}{R^2}=\frac{2}{5}[/tex]
Substituting, we have:
[tex]K.E=\frac{\frac{2}{5} }{1+\frac{2}{5}}\\\\K.E=\frac{0.4 }{1.4}\\\\K.E =\frac{2}{7}[/tex]
c. For a uniform hollow sphere:
[tex]\frac{k^2}{R^2}=\frac{2}{3}[/tex]
Substituting, we have:
[tex]K.E=\frac{\frac{2}{3} }{1+\frac{2}{3}}\\\\K.E=\frac{0.7 }{1.7}\\\\K.E =\frac{2}{5}[/tex]
d. For a hollow sphere with outer radius (R) and inner radius:
[tex]\frac{k^2}{R^2}=\frac{5}{8}[/tex]
Substituting, we have:
[tex]K.E=\frac{\frac{5}{8} }{1+\frac{5}{8}}\\\\K.E=\frac{0.625 }{1.625}\\\\K.E =\frac{5}{13}[/tex]
Read more on moment of inertia here: https://brainly.com/question/3406242
