Answer:
[tex]\Delta H_rxn=-55.8\frac{kJ}{mol KOH}[/tex]
[tex]\Delta H_rxn=-111.6\frac{kJ}{mol H2SO4}[/tex]
Explanation:
The reaction: [tex]H_2SO_4 (aq) + 2 KOH (aq) \longrightarrow K_2SO_4 (aq) + H_2O (l)[/tex]
Total volume: V=50 mL
The heat generated:
[tex]Q=Cp_{water}*\Delta T*V*\delta_{water}[/tex]
[tex]Q=4.184 \frac{J}{g*C}*(30.17 C -23.5 C)*50 mL*\frac{1 g}{mL}}[/tex]
[tex]Q=1395.4 J[/tex]
Moles of KOH: [tex]n_K=\frac{1 mol}{1000 mL}*25 mL=0.025 mol[/tex]
Moles of H2SO4: [tex]n_S=\frac{0.5 mol}{1000 mL}*25 mL=0.0125 mol[/tex]
Heat of reaction:
[tex]\Delta H_{rxn}=\frac{-1395.4 J}{0.025 mol KOH}*\frac{1 kJ}{1000 J}[/tex]
[tex]\Delta H_{rxn}=-55.8\frac{kJ}{mol KOH}[/tex]
[tex]\Delta H_{rxn}=\frac{-1395.4 J}{0.0125 mol H2SO4}*\frac{1 kJ}{1000 J}[/tex]
[tex]\Delta H_{rxn}=-111.6\frac{kJ}{mol H2SO4}[/tex]
Note: the negative sign is beacuse it is an exothermical reaction.