Answer: (39.424, 61.576)
Step-by-step explanation:
When population standard deviation([tex]\sigma[/tex]) unknown ,The confidence interval for population mean is given by :-
[tex]\overline{x}\pm t^*\dfrac{s}{\sqrt{n}}[/tex]
, where n= Sample size
[tex]\overline{x}[/tex] = sample mean.
s= sample standard deviation
[tex]t^*[/tex] = Critical t-value (two-tailed)
Given : n= 15
Degree of freedom= 14 [df=n-1]
[tex]\overline{x}=\ $50.50[/tex]
[tex]s^2=400\\\\\Rightarrow\ s=\sqrt{400}=20[/tex]
Significance level = [tex]\alpha=1-0.95=0.05[/tex]
For [tex]\alpha=0.05[/tex] and df = 14, the critical t-values : [tex]t^*=\pm2.1448[/tex]
Then the 95% confidence interval for population mean will be :
[tex]50.50\pm (2.1448)\dfrac{20}{\sqrt{15}}\\\\=50.50\pm(2.1448)(5.1640)\\\\\approx50.50\pm11.076\\\\=(50.50-11.076,\ 50.50+11.076)\\\\=(39.424,\ 61.576)[/tex]
Hence, a 95% confidence interval for the average amount its credit card customers spent on their first visit to the chain's new store in the mall. : (39.424, 61.576)