Answer:
[tex]v=\sqrt{\frac{G.M_c}{R} }[/tex]
[tex]M_c=[/tex] mass of the earth.
Explanation:
During the revolution of a satellite around a central mass of heavenly body:
[tex]\rm Centripetal\ force\ on\ satellite = Gravitational\ force\ on\ the\ satellite\ due\ to\ the\ central\ heavenly\ mass\[/tex]
[tex]F_c=F_G[/tex]
[tex]M_s.\frac{v^2}{R} =G.\frac{M_s.M_c}{R^2}[/tex]
where:
G = gravitational constant
R = radius of the orbit
[tex]M_s\ \&\ M_c=[/tex]mass of satellite and mass of central heavenly body (here we've the Earth)
v = orbital speed of the satellite
[tex]\Rightarrow v^2=G.\frac{M_c}{R}[/tex]
[tex]v=\sqrt{\frac{G.M_c}{R} }[/tex]