Answer: t = 1.890
Step-by-step explanation:
Let [tex]\mu[/tex] be the population mean amount of ozone in the upper atmosphere.
As per given , we have
[tex]H_0:\mu=6.5\\\\ H_a: \mu\neq6.5[/tex]
Sample size : n= 27
Sample mean = [tex]\overline{x}=6.9[/tex]
Sample variance = [tex]\sigma^2=1.21\\\\\Rightarrow\ \sigma=\sqrt{1.21}=1.1[/tex]
Since population standard deviation is now given , so we use t-test.
Test statistic : [tex]t=\dfrac{\overline{x}-\mu}{\dfrac{s}{\sqrt{n}}}[/tex]
[tex]t=\dfrac{6.9-6.5}{\dfrac{1.1}{\sqrt{27}}}\\\\ t=\dfrac{0.4}{0.211695}\\\\ t=1.8895108528\approx1.890[/tex]
Hence, the value of the test statistic : t = 1.890