Answer: [tex]1.13(10)^{3} Pa[/tex]
Explanation:
This problem can be solved by the following equation:
[tex]\Delta P=\frac{8 \eta L Q}{\pi r^{4}}[/tex]
Where:
[tex]\Delta P[/tex] is the pressure difference between the two ends of the pipe
[tex]\eta=0.20 Pa.s[/tex] is the viscosity of oil
[tex]L=2.6 km=2600 m[/tex] is the length of the pipe
[tex]Q=900 \frac{cm^{3}}{s} \frac{1 m^{3}}{(100 cm)^{3}}=0.0009 \frac{m^{3}}{s}[/tex] is the Rate of flow of the fluid
[tex]d=36 cm=0.36 m[/tex] is the diameter of the pipe
[tex]r=\frac{d}{2}=0.18 m[/tex] is the radius of the pipe
Soving for [tex]\Delta P[/tex]:
[tex]\Delta P=\frac{8 (0.20 Pa.s)(2600 m)(0.0009 \frac{m^{3}}{s})}{\pi (0.18 m)^{4}}[/tex]
Finally:
[tex]\Delta P=1135.26 Pa \approx 1.13(10)^{3} Pa[/tex]