Answer:
PART A
g(R) = [tex]\frac{G(rho)(4)\pi R}{3}[/tex] ;
PART B
g(R) = g(Rp) × [tex]\frac{R}{Rp}[/tex].
Explanation:
Given density of planet = rho.
The planet's radius = Rp.
An object is located a distance R from the center of the planet,
where R< Rp.
The gravitational fore between two point masses m₁ and m₂ is,
F = [tex]\frac{Gm_{1}m_{2}}{r^{2} }[/tex] ; G= universal gravitational constant
r = distance between the masses.
for mass m₂ , F= m₂ g; where g = acceleration due to gravity;
so, g = [tex]\frac{F}{m_{2} }[/tex] = [tex]\frac{Gm_{1}}{r^{2} }[/tex];
From figure, only inside part of the planet exerts force and which can be treated as a point mass.
so, g = [tex]\frac{Gm_{R}}{R^{2} }[/tex]
where [tex]m_{R}[/tex] = mass of the planet with radius R.
⇒ [tex]m_{R}[/tex] = rho × [tex]\frac{4}{3}[/tex][tex]×\pi[/tex]×R³
⇒ g(R) = [tex]\frac{G(rho)(4)\pi R}{3}[/tex] → PART A
PART B
At the surface g(Rp) = [tex]\frac{G(rho)(4)\pi Rp}{3}[/tex]
⇒ g(R) = g(Rp) × [tex]\frac{R}{Rp}[/tex]