Respuesta :
Answer:
The equation of the hyperbola in standard form is [tex]\frac{(x - 4)^2 }{ 9} - \frac{(y +2)^2}{2.25} = 1[/tex]
Step-by-step explanation:
Given:
Centre of the hyperbola=(−2,4)
one vertex of the hyperbola= (−2,7) .
slope of the asymptote = 12
To Find:
The equation of the hyperbola in standard form=?
Solution:
W know that the standard form of hyper bola is
[tex]\frac{(x - h)^2 }{ a^2} - \frac{(y - k)^2}{ b^2} = 1[/tex]............................(1)
where
(h,k) is the centre
(x,y) is the vertex of the parabola
a is the length between the centre and the vertices of the hyperbola
b is the distance perpendicular to the transverse axis from the vertex to the asymptotic line
Now the length of a is given by
a=|k-y|
a=|4-7|
a=|-3|
a=3
Also we know that,
Slope =[tex]\frac{a}{b}[/tex]= 2
=>[tex]\frac{3}{b}=2[/tex]
=>[tex]\frac{3}{2}=b[/tex]
=>b=1.5
Now substituting the known values in equation(1)
[tex]\frac{(x - 4)^2 }{ 3^2} - \frac{(y - (-2)^2}{ 1.5^2} = 1[/tex]
[tex]\frac{(x - 4)^2 }{ 9} - \frac{(y +2)^2}{2.25} = 1[/tex]
Answer:
[tex]\frac{(x+2)^{2}}{1296} - \frac{(y-4)^{2}}{9} = 1[/tex]
Step-by-step explanation:
The standard form of a hyperbola centered at a point distinct from origin has the following form:
[tex]\frac{(x-h)^{2}}{a^{2}} - \frac{(y-k)^{2}}{b^{2}} = 1[/tex]
The distance between the center and the vertex is:
[tex]b = \sqrt{[(-2)-(-2)]^{2}+(7-4)^{2}}[/tex]
[tex]b = 3[/tex]
The value of the other semiaxis is:
[tex]\frac{a}{b} = 12[/tex]
[tex]a = 12\cdot b[/tex]
[tex]a = 36[/tex]
The standard equation of the hyperbola is:
[tex]\frac{(x+2)^{2}}{1296} - \frac{(y-4)^{2}}{9} = 1[/tex]
