Respuesta :
Answer:
Vapor pressure of liquid Sb = 8.19 x 10⁴ mm Hg
Explanation:
The vapor pressure can be calculated by using Clausius‐Clapeyron equation.
ln(p₁/p₂) = (-ΔHvap/R)(1/T₁ - 1/T₂)
Where
p₁ is the vapor pressure at T₁ (Initial Temperature)
p₂ is the vapor pressure at T₂ (final Temperature)
ΔHvap is molar heat of vaporization of the substance
R is the real gas constant = 8.314 x 10⁻³ kJ/mol.K
Data Given:
p₁ = ?
p₂ = 394.98 mm Hg
T₁ = 1.84×10³ K
T₂ = 1.81×10³ K
ΔHvap = 115 kJ/mol
Put the values in the Clausius‐Clapeyron equation
ln(p₁/p₂) = (-ΔHvap/R)(1/T₁ - 1/T₂)
ln(p₁/394.98 mm Hg) = (-115 kJ/mol / 8.314 x 10⁻³ kJ/mol.K)(1/1.84×10³ K- 1/1.81×10³ K)
ln(p₁ /394.98 mm Hg) = (- 13.8321 x 10³)(-0.5519)
ln(p₁ /394.98 mm Hg) = 7633.936
ln cancel out by E, e is raise to a power x
So,
p₁/394.98 mm Hg = e^7633.936
p₁/ 394.98 mm Hg = 20.75 x 10³
p₁ = 20.75 x 10³ x 394.98 mm Hg
p₁ = 8.19 x 10⁴ mm Hg
Vapor pressure of liquid Sb = 8.19 x 10⁴ mm Hg
Answer:
338 mm Hg
Explanation:
[tex]ln(\frac{p2}{400mmHg} )=-115*\frac{1}{0.008314} *(\frac{1}{1.8*10^3} -\frac{1}{1.84*10^3}[/tex])
ln(p2/400)=-0.16705
p2/400= e^-0.16705=0.84615
p2=0.84615*400=338
Note that T2 is lower than T1 and that the vapor pressure decreases as the temperature decreases.
Otras preguntas
