Respuesta :
Answer:
Hence increasing in (-\infty,0) U (1,5)
c) Decreasing in (0,1)
Step-by-step explanation:
Given that y(t) satisfies the differential equation
[tex]\frac{dy}{dt} =y^4-6y^2+5y^2\\=y^2(y^2-6y+5)\\=y^2(y-1)(y-5)[/tex]
Separate the variables to have
[tex]\frac{dy}{y^2(y-1)(y-5)} =dt[/tex]
Left side we can resolve into partial fractions
Let [tex]\frac{1}{y^2(y-1)(y-5)} =\frac{A}{y} +\frac{B}{y^2}+\frac{C}{y-1} \frac{D}{y-5}[/tex]
Taking LCD we get
[tex]1= Ay(y-1)(Y-5) +B(y-1)(y-5)+Cy^2 (y-5)+Dy^2 (y-1)\\Put y =1\\1 = -4C\\Put y =5\\ 1 = 25(4)D\\Put y =0\\1=5B\\[/tex]
By equating coeff of y^3 we have
A+C+D=0
[tex]C=\frac{-1}{4} \\D=\frac{1}{100} \\B =\frac{1}{5} \\A = -C-D = \frac{6}{25}[/tex]
Hence left side =
[tex]\frac{6}{25y} +\frac{1}{5y^2}+\frac{-1}{4(y-1)}+ \frac{1}{100(y-5)}=dt\\\frac{6}{25}ln y -\frac{1}{5y}-\frac{1}{4}ln|(y-1)| +\frac{1}{100}ln|y-5| = t+C[/tex]
b) y is increasing whenever dy/dt>0
dy/dt =0 at points y =0, 1 and 5
dy/dt >0 in (-\infty,0) U (1,5)
Hence increasing in (-\infty,0) U (1,5)
c) Decreasing in (0,1)
Answer:
a) y = 0 , 5,1
b) y ⊂ (- ∞,0) ∪ (0,1)∪(5,∞)
Step-by-step explanation:
Given data:
differential equation is given as
[tex]\frac{dy}[dt} = y^4 -6y^3+ 5y^2[/tex]
a) constant solution
[tex] y^4 -6y^3+ 5y^2 = 0 [/tex]
taking y^2 from all part
[tex]y^2(y^2 - 6y -5) = 0[/tex]
solution of above equation is
y = 0 , 5,1
b) for which value y is increasing
[tex]\frac{dy}{dt} > 0[/tex]
y^2(y - 5) (y -1) > 0
y ⊂ (- ∞,0) ∪ (0,1)∪(5,∞)
Otras preguntas
