Answer:
[tex]0.1546\leq \widehat{p}\leq 0.3513[/tex]
Step-by-step explanation:
The firm tests 75 parts, and finds that 0.25 of them are notusable
n = 75
x = 0.25 \times 75 = 18.75≈19
[tex]\widehat{p}=\frac{x}{n}[/tex]
[tex]\widehat{p}=\frac{19}{75}[/tex]
[tex]\widehat{p}=0.253[/tex]
Confidence level = 95%
So, Z_\alpha at 95% = 1.96
Formula of confidence interval of one sample proportion:
[tex]=\widehat{p}-Z_\alpha \sqrt{\frac{\widehat{p}(1-\widehat{p}}{n}}\leq \widehat{p}\leq \widehat{p}+Z_\alpha \sqrt{\frac{\widehat{p}(1-\widehat{p}}{n}}[/tex]
[tex]=0.253-(1.96)\sqrt{\frac{0.253(1-0.253)}{75}}\leq \widehat{p}\leq0.253+(1.96)\sqrt{\frac{0.253(1-0.253}{75}}[/tex]
Confidence interval [tex]=0.1546\leq \widehat{p}\leq 0.3513[/tex]