Answer:
a) 0.3277
b) 0.0128
Step-by-step explanation:
We are given the following information in the question:
N(2750, 560).
Mean, μ = 2750
Standard Deviation, σ = 560
We are given that the distribution of distribution of birth weights is a bell shaped distribution that is a normal distribution.
Formula:
[tex]z_{score} = \displaystyle\frac{x-\mu}{\sigma}[/tex]
a) P (less than 2500 grams)
P(x < 2500)
[tex]P( x < 2500) = P( z < \displaystyle\frac{2500 - 2750}{560}) = P(z < -0.4464)[/tex]
Calculation the value from standard normal z table, we have,
[tex]P(x < 2500) = P(z < -0.4464) = 0.3277 = 32.77\%[/tex]
b) P ((less than 1500 grams)
P(x < 1500)
[tex]P( x < 1500) = P( z < \displaystyle\frac{1500 - 2750}{560}) = P(z < -2.2321)[/tex]
Calculation the value from standard normal z table, we have,
[tex]P(x < 1500) = P(z < -2.2321) = 0.0128 = 1.28\%[/tex]