Answer:
The magnitude of the linear acceleration of block A is 1.21 m/s² in downward.
Explanation:
Given that,
Mass of block A = 6.00 kg
Mass of block B = 3.00 kg
Moment of inertia = 0.220 kg.m²
Radius = 0.120 m
Suppose we need to find the the magnitude of the linear acceleration of block A
Let a is the acceleration of the blocks.
Let [tex]T_{a}[/tex] and [tex]T_{b}[/tex] are the tension in the A and B cord.
According to figure,
We need to calculate the magnitude of the linear acceleration of block A
Net force acting on block A,
[tex]F_{A}=m_{A}g-T_{A}[/tex]
[tex]m_{A} a=m_{A}g-T_{A}[/tex]
[tex]T_{A}=m_{A}g-m_{A}a[/tex]...(I)
Net force acting on block B,
[tex]F_{B}=T_{B}-m_{B}g[/tex]
[tex]m_{B}a=T_{B}-m_{B}g[/tex]
[tex]T_{B}=m_{B}a+m_{B}g[/tex]...(II)
Net torque acting on pulley
[tex]T_{net}=I\times\alpha[/tex]
[tex]T_{A}r-T_{B}r=I\times \dfrac{a}{r}[/tex]
[tex]T_{A}-T_{B}=I\times\dfrac{a}{r^2}[/tex]
[tex]m_{A}g-m_{A}a-(m_{B}g+m_{B}a)=I\times\dfrac{a}{r^2}[/tex]
[tex]g(m_{A}-m_{B})-a(m_{A}+m_{B})=I\times\dfrac{a}{r^2}[/tex]
[tex]g(m_{A}-m_{B})=I\times\dfrac{a}{r^2}+a(m_{A}+m_{B})[/tex]
[tex]g(m_{A}-m_{B})=a(\dfrac{I}{r^2}+(m_{A}+m_{B}))[/tex]
[tex]a=\dfrac{g(m_{A}-m_{B})}{(\dfrac{I}{r^2}+(m_{A}+m_{B}))}[/tex]
Put the value into the formula
[tex]a=\dfrac{9.8\times(6.00-3.00)}{\dfrac{0.220}{(0.120)^2}+(6.00+3.00)}[/tex]
[tex]a=1.21\ m/s^2[/tex]
Hence, The magnitude of the linear acceleration of block A is 1.21 m/s² in downward.