An empty rubber balloon has a mass of 12.5 g. The balloon is filled with helium at a density of 0.181 kg/m3. At this density the balloon has a radius of 0.294 m. If the filled balloon is fastened to a vertical line, what is the tension in the line? The density of air is 1.29 kg/m3.

Respuesta :

Answer: 1.14 N

Explanation :

As any body submerged in a fluid, it receives an upward force equal to the weight of the fluid removed by the body, which can be expressed as follows:

Fb = δair . Vb . g = 1.29 kg/m3 . 4/3 π (0.294)3  m3. 9.8 m/s2

Fb = 1.34 N

In the downward direction, we have 2 external forces acting upon the balloon: gravity and the tension in the line, which sum must be equal to the buoyant force, as the balloon is at rest.

We can get the gravity force as follows:

Fg = (mb +mhe) g  

The mass of helium can be calculated as the product of the density of the helium times the volume of the balloon (assumed to be a perfect sphere), as follows:

MHe = δHe . 4/3 π (0.294)3 m3 = 0.019 kg

Fg = (0.012 kg + 0.019 kg) . 9.8 m/s2 = 0.2 N

Equating both sides of Newton´s 2nd Law in the vertical direction:

T + Fg = Fb

T = Fb – Fg = 1.34 N – 0.2 N = 1.14 N

ACCESS MORE
EDU ACCESS
Universidad de Mexico