Answer:
v'=1.4 m/s
Explanation:
Lets take mass and the radius for cylinder and sphere is same.
Mass = m
Radius = r
Moment of inertia of sphere I
[tex]I=\dfrac{2}{5}mr^2[/tex]
Moment of inertia of cylinder I'
[tex]I'=\dfrac{1}{2}mr^2[/tex]
Lets take height of ramp = h
Energy conservation for sphere
[tex]mgh=\dfrac{1}{2}mv^2+\dfrac{1}{2}I\omega ^2[/tex]
If we take as motion is pure rolling with out slipping then
v= ωr
[tex]mgh=\dfrac{1}{2}mv^2+\dfrac{1}{2}I\left(\dfrac{v}{r}\right)^2[/tex] ---1
Energy conservation for cylinder
[tex]mgh=\dfrac{1}{2}mv'^2+\dfrac{1}{2}I'\omega' ^2[/tex]
[tex]mgh=\dfrac{1}{2}mv'^2+\dfrac{1}{2}I'\left(\dfrac{v'}{r}\right)^2[/tex] ---2
From equation 1 and 2
[tex]\dfrac{1}{2}mv^2+\dfrac{1}{2}I\left(\dfrac{v}{r}\right)^2=\dfrac{1}{2}mv'^2+\dfrac{1}{2}I'\left(\dfrac{v'}{r}\right)^2[/tex]
[tex]mv^2+I\left(\dfrac{v}{r}\right)^2=mv'^2+I'\left(\dfrac{v'}{r}\right)^2[/tex]
[tex]mv^2+\dfrac{2}{5}mr^2\left(\dfrac{v}{r}\right)^2=mv'^2+\dfrac{1}{2}mr^2\left(\dfrac{v'}{r}\right)^2[/tex]
[tex]mv^2+\dfrac{2}{5}mv^2=mv'^2+\dfrac{1}{2}mv'^2[/tex]
[tex]v^2+\dfrac{2}{5}v^2=v'^2+\dfrac{1}{2}v'^2[/tex]
[tex]\dfrac{7}{5}v^2=\dfrac{3}{2}v'^2[/tex]
1.4 x 1.45²= 1.5 x v'²
v'=1.4 m/s
This is the speed of cylinder at the bottom.