Respuesta :
In order to solve this problem, it is necessary to take into account the concepts related to Bernoulli's equation and the propulsive force.
Bernoulli's equation is defined by,
[tex]\frac{P_A}{\rho g}+\frac{V_A^2}{2g} +z_a = \frac{P_B}{\rho g}+\frac{V_B^2}{2g} +z_B[/tex]
Where
P = Pressure
v = velocity
z= Heigth
[tex]\rho =[/tex]Density
g = Gravitational Force
We must look for the speed at the exit. Our values are given by,
[tex]V_A = 0[/tex]
[tex]P_A = 90Psi=620528Pa[/tex]
[tex]T = 70\°F = 21.11\°C[/tex]
[tex]\rho = 998kg/m^3[/tex]
Since water is exposed to atmosphere outlet at the end, then [tex]P_B = 0[/tex]
Replacing we have
[tex]\frac{P_A}{\rho g}+\frac{V_A^2}{2g} +z_a = \frac{P_B}{\rho g}+\frac{V_B^2}{2g} +z_B[/tex]
[tex]\frac{620528}{998(9.8)}+\frac{0^2}{2(9.8)} +0 = \frac{0}{998(9.81)}+\frac{V_B^2}{2(9.81)} +0[/tex]
[tex]63.4460 = \frac{V_B^2}{2(9.81)}[/tex]
[tex]V_B = \sqrt{2(63.4460)(9.81)}[/tex]
[tex]V_B = 35.28m/s[/tex]
According to the statement, the required force is given by 500Lbf that is 2224.11N
Based on the propulsive force we have to
[tex]F_x = \rho A(V_C+V_B)[/tex]
Replacing our values,
[tex]2224.11 = (998)(\frac{\pi}{4}d^2)(0-35.28^2)[/tex]
[tex]d^2=\frac{4(2224.11)(0-35.28^2)}{(998)\pi}[/tex]
[tex]d^2 = 3531.77[/tex]
[tex]d = 59.42m[/tex]