Answer:
[tex]S_A=S/4[/tex]
[tex]V_B=4*V_A[/tex]
Explanation:
We know that [tex]R_B=4*R_A[/tex] and [tex]\omega_A=\omega_B=\omega[/tex]
The distance traveled by Beth is given by:
[tex]S_B=S=V_B*\Delta t=\omega*R_B*\Delta t[/tex]
Replacing the relation between the radius of both paths:
[tex]S=4*\omega*R_A*\Delta t[/tex] (eq1)
The distance traveled by Alf is given by:
[tex]S_A=V_A*\Delta t=\omega*R_A*\Delta t[/tex] (eq2)
If we replace eq2 into eq1:
[tex]S=4*S_A[/tex] therefore: [tex]S_A=S/4[/tex]
The relation between speeds is:
[tex]\omega_A=\omega_B[/tex]
[tex]\frac{V_A}{R_A} =\frac{V_B}{R_B}[/tex]
[tex]\frac{V_A}{R_A} =\frac{V_B}{4*R_A}[/tex]
[tex]V_A =\frac{V_B}{4}[/tex]
[tex]V_B =4*V_A[/tex]