Answer:
95% confidence interval for the true fraction p is (0.426, 0.488)
Step-by-step explanation:
Confidence Interval can be calculated using p±ME where
and margin of error (ME) around the mean can be found using the formula
ME=[tex]\frac{z*\sqrt{p*(1-p)}}{\sqrt{N} }[/tex] where
then ME=[tex]\frac{1.96*\sqrt{0.457*0.543}}{\sqrt{1000} }[/tex] ≈ 0.031
Then 95% confidence interval would be 0.457±0.031 or (0.426, 0.488)