Answer:
1.38*10^18 kg
Explanation:
According to the Newton's law of universal gravitation:
[tex]F=G*\frac{m_a*m_p}{r^2}[/tex]
where:
G= Gravitational constant (6.674×10−11 N · (m/kg)2)
ma= mass of the astronaut
mp= mass of the planet
[tex]F=m_a.a\\(v_f )^2=(v_o)^2+2.a.\Delta y\\\\a=\frac{(v_f)^2-(v_o)^2}{2.\Delta y}\\\\a=\frac{(0)^2-(4.29m/s)^2}{2.0.64m}=14.38m/s^2\\\\F=m_a*14.38m/s^2[/tex]
so:
[tex]m_a*14.38m/s^2=(6.674*10^{-11}N.(m/kg)^2)*\frac{m_a.m_p}{(2.530*10^3m)^2}\\m_p=\frac{14.38m/s^2(2.530*10^3m)^2}{(6.674*10^{-11}N.(m/kg)^2)}\\\\m_p=1.38*10^{18}kg[/tex]