Answer:
[tex]\frac{\ln 4}{k}[/tex]
Step-by-step explanation:
Given equation that shows the change in population with respect to time,
[tex]\frac{dP}{dt}=kP[/tex]
[tex]\frac{dP}{P}=kdt[/tex]
On integrating,
[tex]\ln P = kt + C[/tex]
[tex]\implies P = e^{kt+C}[/tex]
[tex]P=e^C e^{kt}[/tex]
Put [tex]e^C=P_0[/tex]
[tex]P = P_0 e^{kt}[/tex]
According to the question,
If P = A if t = 0,
[tex]A = P_0 e^0\implies A = P_0[/tex]
Thus, the required function,
[tex]P = A e^{kt}[/tex]
If the final population = 4A,
[tex]4A = A e^{kt}[/tex]
[tex]4 = e^{kt}[/tex]
Taking natural log both sides,
[tex]\ln 4 = \ln e^{kt}[/tex]
[tex]\ln 4 = kt\ln e[/tex]
[tex]\ln 4 = kt[/tex]
[tex]\implies t = \frac{\ln 4}{k}[/tex]
Hence, after [tex]\frac{\ln 4}{k}[/tex] time, the population will be quadruple its initial value.