A population grows exponentially according to the differential equation dP, dt equals k times P , where P is the population, t is time, and k is a positive constant. If P(0) = A, what is the time for the population to quadruple its initial value?

Respuesta :

Answer:

[tex]\frac{\ln 4}{k}[/tex]

Step-by-step explanation:

Given equation that shows the change in population with respect to time,

[tex]\frac{dP}{dt}=kP[/tex]

[tex]\frac{dP}{P}=kdt[/tex]

On integrating,

[tex]\ln P = kt + C[/tex]

[tex]\implies P = e^{kt+C}[/tex]

[tex]P=e^C e^{kt}[/tex]

Put [tex]e^C=P_0[/tex]

[tex]P = P_0 e^{kt}[/tex]

According to the question,

If P = A if t = 0,

[tex]A = P_0 e^0\implies A = P_0[/tex]

Thus, the required function,

[tex]P = A e^{kt}[/tex]

If the final population = 4A,

[tex]4A = A e^{kt}[/tex]

[tex]4 = e^{kt}[/tex]

Taking natural log both sides,

[tex]\ln 4 = \ln e^{kt}[/tex]

[tex]\ln 4 = kt\ln e[/tex]

[tex]\ln 4 = kt[/tex]

[tex]\implies t = \frac{\ln 4}{k}[/tex]

Hence, after [tex]\frac{\ln 4}{k}[/tex] time, the population will be quadruple its initial value.

ACCESS MORE