Respuesta :

Answer:

[tex]\tan \theta = - \frac{1}{5} = - 0.2[/tex]

[tex]\cos \theta = 0.98[/tex]

[tex]\sin \theta = - 0.196[/tex]

Step-by-step explanation:

It is given that [tex]\cot \theta = - 5[/tex] and [tex]\theta[/tex] is in the fourth quadrant.

So, only [tex]\cos \theta[/tex] will have positive value and [tex]\sin \theta[/tex], [tex]\tan \theta[/tex] will have negative value.

Now, [tex]\cot \theta = - 5[/tex]

⇒ [tex]\tan \theta = \frac{1}{\cot \theta} = -\frac{1}{5}[/tex] (Answer)

We know, that [tex]\sec^{2} \theta - \tan^{2} \theta = 1[/tex]

⇒ [tex]\sec \theta = \sqrt{1 + \tan^{2} \theta } = \sqrt{1 + (- \frac{1}{5} )^{2} } = 1.019[/tex]

{Since, [tex]\cos \theta[/tex] is positive then [tex]\sec \theta[/tex] will also be positive}

⇒ [tex]\cos \theta = \frac{1}{\sec \theta} = \frac{1}{1.0198} = 0.98[/tex] (Answer)

We know, that [tex]\csc^{2} \theta - \cot^{2} \theta = 1[/tex]

⇒ [tex]\csc \theta = - \sqrt{1 + \cot^{2} \theta } = - \sqrt{1 + (- 5 )^{2} } = - 5.099[/tex]

{Since, [tex]\sin \theta[/tex] is negative then [tex]\csc \theta[/tex] will also be negative}

⇒ [tex]\sin \theta = \frac{1}{\csc \theta} = \frac{1}{- 5.099} = - 0.196[/tex] (Answer)

ACCESS MORE