Respuesta :
Answer: [tex]15.3\pm0.198[/tex]
OR
(15.102, 15.498)
Step-by-step explanation:
The formula to find the confidence interval[tex](\mu)[/tex] is given by :-
[tex]\overline{x}\pm z_{\alpha/2, df}\dfrac{s}{\sqrt{n}}[/tex]
, where n is the sample size
[tex]s[/tex] = sample standard deviation.
[tex]\overline{x}[/tex]= Sample mean
[tex]z_{\alpha/2}[/tex] = Two tailed z-value for significance level of [tex]\alpha[/tex] .
Given : Confidence level = 95% = 0.95
Significance level = [tex]\alpha=1-0.95=0.05[/tex]
[tex]s= 1.6[/tex]
[tex]\overline{x}=15.3[/tex]
sample size : n= 250 , which is extremely large ( than n=30) .
So we assume sample standard deviation is the population standard deviation.
thus , [tex]\sigma=1.6[/tex]
By standard normal distribution table ,
Two tailed z-value for Significance level of 0.05 :
[tex]z_{\alpha/2}=z_{0.025}=1.96[/tex]
Then, the 95% confidence interval for the mean credit hours taken by a student each quarter :-
[tex]15.3\pm (1.96)\dfrac{1.6}{\sqrt{250}}\\\\ =15.3\pm 0.19833\\\\=\approx15.3\pm0.198\\\\=(15.3-0.198,\ 15.3+0.198)=(15.102,\ 15.498)[/tex]
Hence, the mean credit hours taken by a student each quarter using a 95% confidence interval. =(15.102, 15.498)