The acceleration of the crate is [tex]1.638 \mathrm{m} / \mathrm{s}^{2}[/tex] if a crate weighs 25 kg with a coefficient of sliding friction 0.2
Explanation:
Given that,
Mass of the crate (m) = 25kg
Coefficient of friction (µ) = 0.2
[tex]\mathrm{F}_{\text {applied }}=90 \mathrm{N}[/tex]
Gravitational acceleration is [tex]9.8 \mathrm{m} / \mathrm{s}^{2}[/tex]
We know that when the force is applied and frictional force acts in the body the net force is written as [tex]\Sigma \mathrm{F}=\mathrm{F}_{\text {applied }}-\mathrm{F}_{\text {frict }}[/tex]
[tex]\mathrm{F}_{\text {frict }}=\mu \mathrm{N} \quad(\mathrm{N}=\mathrm{mg})[/tex]
[tex]\Sigma \mathrm{F}=\mathrm{F}_{\text {applied }}-\mu \mathrm{mg}[/tex]
According to newton second law
[tex]\Sigma F=m a[/tex]
[tex]a=\frac{\Sigma \mathrm{F}}{m}[/tex]
[tex]a=\frac{F_{a p p l i e d}-\mu m g}{m}[/tex]
[tex]a=\frac{90-(0.2 \times 25 \times 9.81)}{25}[/tex]
[tex]a=\frac{90-49.05}{25}[/tex]
[tex]a=\frac{40.95}{25}[/tex]
[tex]a=1.638 \mathrm{m} / \mathrm{s}^{2}[/tex]
Therefore acceleration of crate is [tex]1.638 \mathrm{m} / \mathrm{s}^{2}[/tex].