A 25 kg crate is on surface with a coefficient of sliding friction of 0.2. A 90 Newton force is applied to move the crate to the right. What is the acceleration?

Respuesta :

The acceleration of the crate is [tex]1.638 \mathrm{m} / \mathrm{s}^{2}[/tex] if a crate weighs 25 kg with a coefficient of sliding friction 0.2

Explanation:

Given that,

Mass of the crate (m) = 25kg

Coefficient of friction (µ) = 0.2

[tex]\mathrm{F}_{\text {applied }}=90 \mathrm{N}[/tex]

Gravitational acceleration is [tex]9.8 \mathrm{m} / \mathrm{s}^{2}[/tex]

We know that when the force is applied and frictional force acts in the body the net force is written as [tex]\Sigma \mathrm{F}=\mathrm{F}_{\text {applied }}-\mathrm{F}_{\text {frict }}[/tex]

[tex]\mathrm{F}_{\text {frict }}=\mu \mathrm{N} \quad(\mathrm{N}=\mathrm{mg})[/tex]

[tex]\Sigma \mathrm{F}=\mathrm{F}_{\text {applied }}-\mu \mathrm{mg}[/tex]

According to newton second law

[tex]\Sigma F=m a[/tex]

[tex]a=\frac{\Sigma \mathrm{F}}{m}[/tex]

[tex]a=\frac{F_{a p p l i e d}-\mu m g}{m}[/tex]

[tex]a=\frac{90-(0.2 \times 25 \times 9.81)}{25}[/tex]

[tex]a=\frac{90-49.05}{25}[/tex]

[tex]a=\frac{40.95}{25}[/tex]

[tex]a=1.638 \mathrm{m} / \mathrm{s}^{2}[/tex]

Therefore acceleration of crate is [tex]1.638 \mathrm{m} / \mathrm{s}^{2}[/tex].

RELAXING NOICE
Relax