Answer: [tex]V_2=\frac{101.3kPa\times 20.0ml\times 283K}{297K\times 94.6kPa}[/tex]
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,:
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
[tex]V_2=\frac{P_1V_1T_2}{T_1P_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure of gas = 101.3 kPa
[tex]P_2[/tex] = final pressure of gas = 94.6 kPa
[tex]V_1[/tex] = initial volume of gas = 20.0 ml
[tex]V_2[/tex] = final volume of gas = ?
[tex]T_1[/tex] = initial temperature of gas = [tex]297K[/tex]
[tex]T_2[/tex] = final temperature of gas = [tex]283K[/tex]
Now put all the given values in the above equation, we get the final volume of gas.
[tex]V_2=\frac{101.3kPa\times 20.0ml\times 283K}{297K\times 94.6kPa}[/tex]
[tex]V_2=20.4ml[/tex]
Thus the correct numerical setup for calculating the new volume is [tex]\frac{101.3kPa\times 20.0ml\times 283K}{297K\times 94.6kPa}[/tex]