Answer:
v=22.22 m/s
Explanation:
Given that
m= 1610 kg
initial velocity ,u= 21.7 m/s
The energy provided by engine(W₁) = 22100 J
The energy lost in the friction(W₂) = 3683.33 J
Lets take final velocity of the car = v m/s
Now from energy conservation
Work done by all forces = Change in the kinetic energy
W₁ + W₂ = ΔKE
[tex]W_1 - W_2=\dfrac{1}{2}mv^2-\dfrac{1}{2}mu^2[/tex]
By putting the values
[tex]W_1 - W_2=\dfrac{1}{2}mv^2-\dfrac{1}{2}mu^2[/tex]
[tex]22100 - 3683.33=\dfrac{1}{2}\times 1610 v^2-\dfrac{1}{2}\times 1610 \times 21.7^2[/tex]
[tex]\dfrac{1}{2}\times 1610 v^2=22100 - 3683.33+\dfrac{1}{2}\times 1610 \times 21.7^2[/tex]
v=22.22 m/s
This is final speed of the car.