Answer:
The magnitude of the field is 1.112 T
The direction in case of proton is [tex]\hat{k}[/tex], i.e., outwards
The direction in case of proton is [tex]\hat{- k}[/tex], i.e., inwards
Solution:
As per the question:
Velocity of the proton, [tex]\vec{v} = 4.5\times 10^{5}\hat{i}\ m/s[/tex]
Magnetic force, [tex]\vec{F}8.0\times 10^{- 14}\hat{- j}\ N[/tex]
Charge on proton, q = [tex]1.6\times 10^{- 19}\ C[/tex]
Charge on electron, e = [tex]- 1.6\times 10^{- 19}\ C[/tex]
Now,
The magnitude of the mgnetic field can be given by the formula of Lorentz force:
[tex]\vec{F} = q(\vec{v}\times \vec{B})[/tex]
For maximum force, the magnitude of the force is given by:
F = qvB
[tex]B = \frac{F}{qv}[/tex]
[tex]B = \frac{8.0\times 10^{- 14}}{1.6\times 10^{- 19}\times 4.5\times 10^{5}} = 1.112\times T[/tex]
Now, for the direction of the field:
[tex]\hat{- j} = \hat{i}\times \vec{B})[/tex]
The direction that we get from the above eqn is [tex]\hat{k}[/tex]
Now, in case of electron:
[tex]B = \frac{F}{qv}[/tex]
[tex]B = \frac{8.0\times 10^{- 14}}{1.6\times 10^{- 19}\times 4.5\times 10^{5}} = 1.112\times T[/tex]
Now, for the direction of the field:
[tex]\hat{- j} = -\hat{i}\times \vec{B})[/tex]
The direction that we get from the above eqn is [tex]\hat{- k}[/tex], i.e., directed inwards.