Respuesta :
Answer:5.67 h
Step-by-step explanation:
Given
Distance is given by
[tex]d=t^2+70 t[/tex] , t is in hours
Truck destination is 429.75 miles away
i.e. substitute [tex]d=429.75 miles[/tex]
[tex]t^2+70t-429.75=0[/tex]
Roots of Quadratic Equation can be found out by
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
Using this
[tex]t=\frac{-70\pm \sqrt{70^2+4\times 1\times 429.75}}{2\times 1}[/tex]
[tex]t=\frac{-70\pm \sqrt{6619}}{2}[/tex]
[tex]t=\frac{-70\pm 81.357}{2}[/tex]
[tex]t=5.67 hr[/tex]
Neglecting negative t
Answer: It will take 5.6786 hour
Step-by-step explanation:
Given that: [tex]d = t^2 + 70 t[/tex]
Here, d = distance = 429.75 miles
We have to solve for t.
[tex]429.75 = t^2 + 70 t\\t^2 + 70 t-429.75=0\\t=\frac{-70 \pm \sqrt{70^{2}-4\left(1\right)\left(-429.75\right)}}{2\left(1\right)}\\t=5.6786, -75.6786[/tex]
t can not be negative.
So, time = t = 5.6786 hour.
Learn more: https://brainly.com/question/12049968