Answer: Option (B) is the correct answer.
Explanation:
The given data is as follows.
pH for blood = 7.35,
For carbonic acid, [tex]K_{a_{1}} = 4.2 \times 10^{-7}[/tex]
Therefore, calculate the pH of buffer solution as follows.
pH = [tex]pK_{a_{1}} + log \frac{\text{Conjugate anion}}{\text{Acid}}[/tex]
= [tex]-log K_{a_{1}} + log \frac{\text{bicarbonate}}{\text{carbonic acid}}[/tex]
Now, putting the given values into the above formula as follows.
pH = [tex]-log K_{a_{1}} + log \frac{\text{bicarbonate}}{\text{carbonic acid}}[/tex]
7.35 = [tex]-log (4.2 \times 10^{-7}) + log \frac{\text{bicarbonate}}{\text{carbonic acid}}[/tex]
7.35 = [tex]6.377 + log \frac{\text{bicarbonate}}{\text{carbonic acid}}[/tex]
[tex]\frac{\text{bicarbonate}}{\text{carbonic acid}} = 10^{0.937}[/tex]
= 9.4
Therefore, we can conclude that the ratio of [bicarbonate]/[carbonic acid] at this pH is 9.4.