Respuesta :
Answer:
2.02395 T
Explanation:
q = Charge = [tex]1.6\times 10^{-19}\ C[/tex]
m = Rest mass of proton = [tex]1.67\times 10^{-27}\ kg[/tex]
f = Frequency = 9.6 MHz
I = Current
Cylclotron frequency is given by
[tex]f=\frac{qB}{2\pi m}[/tex]
Magnetic field is given by
[tex]B=\frac{2\pi mf}{q}\\\Rightarrow B=\frac{2\pi 1.67\times 10^{-27}\times 9.6\times 10^6}{1.6\times 10^{-19}}\\\Rightarrow B=0.62957\ T[/tex]
Hall voltage is given by
[tex]v_h=\frac{IBD}{neA}[/tex]
For the two cases
[tex]v_h_1=\frac{IB_1D}{neA}[/tex]
[tex]v_h_2=\frac{IB_2D}{neA}[/tex]
Divinding the Hall voltages
[tex]\frac{v_h_1}{v_h_2}=\frac{B_1}{B_2}\\\Rightarrow B_2=\frac{v_h_2}{v_h_1}\times B_1\\\Rightarrow B_2=\frac{1.736}{0.54}\times 0.62957\\\Rightarrow B_2=2.02395\ T[/tex]
The strength of the magnetic field is 2.02395 T
The magnetic field strength of the unknown magnetic field in the later case is 2.02 T.
The given parameters;
- proton's cyclotron frequency, f = 9.60 MHz
- Hall voltage, V = 0.54 mV
- current, I = 0.143 mA
- second hall voltage, V₂ = 1.736 mV
The initial magnetic field strength of the protons is calculated as follows;
[tex]f = \frac{qB}{2\pi m_p} \\\\B = \frac{2\pi m_p f}{q} \\\\B_1 = \frac{2\pi \times1.67 \times 10^{-27}\times 9.6 \times 10^{6} }{1.602 \times 10^{-19}} \\\\B_1 = 0.629 \ T[/tex]
The hall voltage is calculated as follows;
[tex]V_H= \frac{IB}{qnd} \\\\V_H_1 = \frac{I B_1}{qnd} \\\\V_H_2 = \frac{I B_2}{qnd} \\\\\frac{V_H_1}{V_H_2} = \frac{B_1}{B_2} \\\\\frac{B_2}{B_1} = \frac{V_H_2}{V_H_1} \\\\B_2 = B_1 (\frac{V_H_2}{V_H_1} )\\\\B_2 = 0.629 \times (\frac{1.736}{0.54} )\\\\B_2 = 2.02 \ T[/tex]
Thus, the magnetic field strength in the later case is 2.02 T.
Learn more here:https://brainly.com/question/19247046
Otras preguntas
