Respuesta :
Answer:
1. 3/5
2. 1.219841
3. 2 - f(2)/7
4. -1.9682
5. 1.502446
Step-by-step explanation:
1.
If we call
[tex]\large f(x)=x^4-x-2[/tex]
then the second approximation to the root of the equation f(x)=0 would be
[tex]\large x_2=x_1-\frac{f(x_1)}{f'(x_1)}[/tex]
[tex]\large f(x_1)=f(1)=-2\\\\f'(x)=4x^3-1\Rightarrow f'(x_1)=f'(1)=3[/tex]
hence
[tex]\large x_2=1-\frac{-2}{3}=1+\frac{2}{3}=\frac{5}{3}\approx1.666666[/tex]
2.
Here we have
[tex]\large f(x)=x^4-2x^3+7x^2-9\\\\f'(x)=4x^3-6x^2+14x[/tex]
Let's start with
[tex]\large x_1=1[/tex]
then
[tex]\large x_2=x_1-\frac{f(x_1)}{f'(x_1)}=1-\frac{f(1)}{f'(1)}=1-\frac{-3}{12}=1+\frac{1}{4}=\frac{5}{4}=1.25[/tex]
[tex]\large x_3=x_2-\frac{f(x_2)}{f'(x_2)}=1.25-\frac{f(1.25)}{f'(1.25)}=1.220343137[/tex]
[tex]\large x_4=x_3-\frac{f(x_3)}{f'(x_3)}=1.220343137-\frac{f(1.220343137)}{f'(1.220343137)}=1.219841912[/tex]
[tex]\large x_5=x_4-\frac{f(x_4)}{f'(x_4)}=1.219841912-\frac{f(1.219841912)}{f'(1.219841912)}=1.219841771[/tex]
Since the first 6 decimals of [tex]\large x_4[/tex] and [tex]\large x_5[/tex] are equal, the desired approximation is 1.219841
3.
If the line y = 4x − 1 is tangent to the curve y = f(x) when x = 2, then f'(2) = 4*2 - 1 = 7, so
[tex]\large x_2=2-\frac{f(2)}{f'(2)}=2-\frac{f(2)}{7}[/tex]
4.
Here
[tex]\large f(x)=x^5 + 8\\\\f'(x)=5x^4[/tex]
[tex]\large x_2=-1-\frac{f(-1)}{f'(-1)}=-2.4[/tex]
[tex]\large x_3=-2.4-\frac{f(-2.4)}{f'(-2.4)}=-1.9682[/tex]
5.
We want to find all the values x such that
[tex]\large e^x=9-3x[/tex]
or what is the same, the x such that
[tex]\large e^x+3x-9=0[/tex]
so, let f(x) be
[tex]\large f(x)=e^x+3x-9[/tex]
and let's use Newton's method to find the roots of f(x).
Since
[tex]\large f'(x)=e^x +3>0[/tex]
f is strictly increasing, and since
f(1) = e+3-9 = e - 6 < 0
and
[tex]\large f(2)=e^2+6-9=e^2-3>0[/tex]
f has only one root in [1,2]
By using Newton's iterations starting with [tex]\large x_1=1[/tex]
[tex]\large x_2=1-\frac{f(1)}{f'(1)}=1.573899431[/tex]
[tex]\large x_3=1.573899431-\frac{f(1.573899431)}{f'(1.573899431)}=1.503982961[/tex]
[tex]\large x_4=1.503982961-\frac{f(1.503982961)}{f'(1.503982961)}=1.502446348[/tex]
[tex]\large x_5=1.502446348-\frac{f(1.502446348)}{f'(1.502446348)}=1.50244564[/tex]
[tex]\large x_6=1.50244564-\frac{f(1.50244564)}{f'(1.50244564)}=1.50244564[/tex]
Since [tex]\large x_5=x_6[/tex] then
x=1.50244564 is the desired root.
The answers as a comma-separated list would be
1, 1.573899431, 1.503982961, 1.502446348, 1.50244564
The answer rounded to six decimal places would be
1.502446