Answer:
The final volume of the bubble is 7.13 mL.
Explanation:
The combined gas equation is,
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure of gas = 3 atm
[tex]P_2[/tex] = final pressure of gas = 0.95 atm
[tex]V_1[/tex] = initial volume of gas = [tex]2.1 mL=0.0021 L[/tex]
[tex]V_2[/tex] = final volume of gas = ?
[tex]T_1[/tex] = initial temperature of gas = [tex]4^oC=273.15+4K=277.15 K[/tex]
[tex]T_2[/tex] = final temperature of gas = [tex]25^oC=273.15+25 k=298 .15 K[/tex]
Now put all the given values in the above equation, we get:
[tex]\frac{3 atm\times 0.0021 L}{277.15 K}=\frac{0.95 atm\times V_2}{298.15 K}[/tex]
[tex]V_2=\frac{3 atm\times 0.0021 L\times 298.15 K}{277.15 K\times 0.95 atm}=0.00713 L = 7.13 mL[/tex]
The final volume of the bubble is 7.13 mL.