To solve this exercise, it is necessary to apply the concepts of conservation of the moment especially in objects that experience an inelastic colposition.
They are expressed as,
[tex]m_1v_1+m_2v_2 = (m_1+m_2)v_f[/tex]
Where,
[tex]m_1[/tex]= mass of the skier
[tex]m_2[/tex]= mass of the cat
[tex]v_1[/tex] = initial velocity of skier
[tex]v_2[/tex] = initial velocity of cat
[tex]v_f[/tex]= final velocity of both
Re-arrange to find V_f we have,
[tex]V_f = \frac{m_1v_1+m_2v_2}{(m_1+m_2)}[/tex]
[tex]V_f = \frac{(60)(15)+(5)(-3.8)}{(60+5)}[/tex]
[tex]V_f = 13.55m/s[/tex]
Once the final velocity is found it is possible to calculate the change in kinetic energy, so
[tex]\Delta KE = KE_i-KE_f[/tex]
[tex]\Delta KE = \frac{1}{2}(m_1v_1^2+m_2v^2_2)-\frac{1}{2}(m_1+m_2)v_f^2[/tex]
[tex]\Delta KE = \frac{1}{2}((60)(15)^2+(5)(-3.8)^2)-\frac{1}{2}(60+5)(13.55)^2[/tex]
[tex]\Delta KE = 819.1J[/tex]
Therefore the amount of kinetic energy converted in to internal energy is 819J