Answer:
J=0.211kg.m/s
Explanation:
The impulse-momentum theorem states:
[tex]J=\Delta p\\J=m(v_a-v-b)\\where:\\m=mass\\v_a=velocity\_after\\v_b=velocity\_before[/tex]
The velocity before the impact is given by:
[tex](v_b)^2=2.a.\Delta y\\v_b=\sqrt{2*(9.8m/s^2)1.90m}=6.10m/s(-\hat{j})[/tex]
For the velocity after the impact:
[tex](v_f)^2=(v_a)^2+2.a.\Delta y\\(0)^2=(v_a)^2+2.(-9.8m/s^s).(1.45m)\\\\v_a=\sqrt{2*9.8m/s^2*1.45m}\\v_a=5.33m/s(\hat{j})[/tex]
so:
[tex]J=18.5*10^{-3}kg(5.33m/s(\hat{j})-6.10m/s(-\hat{j}))\\\\J=18.5*10^{-3}kg(5.33m/s(\hat{j})+6.10m/s(\hat{j}))\\\\J=0.211kg.m/s[/tex]