Answer: B. 1.679
Step-by-step explanation:
The standard deviation of the difference between the two means is given by :-
[tex]SD (\overline{x}_1-\overline{x}_2)=\sqrt{\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma_2^2}{n_2}}[/tex]
If true population standard deviations are not available , then
we estimate the standard error as
[tex]SE (\overline{x}_1-\overline{x}_2)=\sqrt{\dfrac{s_1^2}{n_1}+\dfrac{s_2^2}{n_2}}[/tex]
Given : [tex]s_1=5,\ s_2=3\ , n_1=13,\ n_2=10[/tex]
Then , the standard deviation of the difference between the two means will be :-
[tex]SE (\overline{x}_1-\overline{x}_2)=\sqrt{\dfrac{(5)^2}{13}+\dfrac{(3)^2}{10}}\\\\=\sqrt{\dfrac{25}{13}+\dfrac{9}{10}}\\\\=\sqrt{1.9231+0.9}\\\\=\sqrt{2.8231}=1.680[/tex]
Hence, the correct answer is B. 1.679