Answer: -3.0593
Step-by-step explanation:
The test statistic for the difference between two population mean (when population standard deviations [tex]\sigma_1\ \&\ \sigma_2[/tex] are known ) is given by :-
[tex]z=\dfrac{\overline{x}_1-\overline{x}_2}{\sqrt{\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma_2^2}{n_2}}}[/tex]
where ,
[tex]n_1\ \&\ n_2[/tex] = Sample sizes taken from two populations 1 and 2.
[tex]\overline{x}_1-\overline{x}_2[/tex] = Difference between two Sample mean.
[tex]\sigma_1\ \&\ \sigma_2[/tex] = Standard deviations of populations 1 and 2.
As per given , we have
[tex]n_1=55\ \&\ n_2=58[/tex]
[tex]\overline{x}_1=2.95\ \&\ \overline{x}_2=3.3[/tex]
[tex]\sigma_1=0.65\ \&\ \sigma_2=0.56[/tex]
We assume that the data follows a normal distribution.
Then, the test statistic will be :-
[tex]z=\dfrac{2.95-3.3}{\sqrt{\dfrac{(0.65)^2}{55}+\dfrac{(0.56)^2}{58}}}\\\\=\dfrac{-0.35}{\sqrt{0.0130887}}\\\\=\dfrac{-0.35}{0.1144059}=3.05928278174\approx-3.0593[/tex]
Hence, the test statistic= -3.0593