Respuesta :

Answer:

[tex]a_n[/tex] represents a particular any term and [tex]a_{n-1}[/tex] represents just previous term.

[tex]a_8=38[/tex]

Step-by-step explanation:

In the given recursive formula,

[tex]a_n= a_{n-1}+5[/tex]

[tex]a_n[/tex] represents [tex]n^{th} \ term[/tex]

and [tex]a_{n-1}[/tex]represents just its previous term.

To find [tex]a_8[/tex], first five terms are given there. We need to find its previous terms [tex]a_6 \ and\ a_7[/tex]

[tex]a_6 = a_{n-1}+5\\a_6= a_{6-1}+5\\a_6 = a_5 +5\\substitute \ a_5 =23\\a_6 = 23+5=28[/tex]

Similarly,

[tex]a_7 = a_{n-1}+5\\a_7= a_{7-1}+5\\a_7 = a_6 +5\\substitute \ a_6 =28\\a_7 = 28+5=33[/tex]

Similarly,

[tex]a_8 = a_{8-1}+5\\a_8= a_{8-1}+5\\a_8 = a_7 +5\\substitute \ a_7 =33\\a_8 = 33+5=38[/tex]

Thus [tex]a_8 = 38[/tex] is the answer.