Consider the sequence:
3, 8, 13, 18, 23, ...
![Consider the sequence 3 8 13 18 23 class=](https://us-static.z-dn.net/files/d03/fbf005801f01b3eea27cc5fa65b6822a.png)
Answer:
[tex]a_n[/tex] represents a particular any term and [tex]a_{n-1}[/tex] represents just previous term.
[tex]a_8=38[/tex]
Step-by-step explanation:
In the given recursive formula,
[tex]a_n= a_{n-1}+5[/tex]
[tex]a_n[/tex] represents [tex]n^{th} \ term[/tex]
and [tex]a_{n-1}[/tex]represents just its previous term.
To find [tex]a_8[/tex], first five terms are given there. We need to find its previous terms [tex]a_6 \ and\ a_7[/tex]
[tex]a_6 = a_{n-1}+5\\a_6= a_{6-1}+5\\a_6 = a_5 +5\\substitute \ a_5 =23\\a_6 = 23+5=28[/tex]
Similarly,
[tex]a_7 = a_{n-1}+5\\a_7= a_{7-1}+5\\a_7 = a_6 +5\\substitute \ a_6 =28\\a_7 = 28+5=33[/tex]
Similarly,
[tex]a_8 = a_{8-1}+5\\a_8= a_{8-1}+5\\a_8 = a_7 +5\\substitute \ a_7 =33\\a_8 = 33+5=38[/tex]
Thus [tex]a_8 = 38[/tex] is the answer.