Answer:
a) 665 kg.m/s
b) 2.97 kN
Explanation:
The impulse is given by:
[tex]J=\Delta p\\J=m(v_a-v_b)[/tex]
where
va=velocity after
vb=velocity before
The velocity just before is given by:
[tex]v_b=\sqrt{2*9.81m/s^2*9m}=13.3m/s(-\hat{j})[/tex]
The velocity just after is zero because there wasn't a rebound.
So the impulse is:
[tex]J=50kg*(0-13.3m/s(-\hat{j}))\\J=50kg*(0+13.3m/s(\hat{j}))=665kg.m/s[/tex]
The impulse is also given by:
[tex]J=\Delta p=F* \Delta t\\so:\\F=\frac{J}{\Delta t}\\\\F=\frac{665kg.m/s}{0.224s}=2.97kN[/tex]